Дома

Двигательная единица схема. Двигательная единица. Отличительные особенности быстрых мышечных волокон

Отросток двигательного нерва, который находится в спинном мозге, может достигать мышечного волокна. Нервная клетка своими отростками иннервирует большое количество мышечных волокон. Нервная клетка и волокна, которые связаны с ней, называются двигательными единицами. Состав мышц может быть разным по числу двигательных единиц, а они состоят из разного количества мышечных волокон. Все эти волокна двигательной единицы относятся к одинаковому типу волокна.

Мышцы, в чью функцию входит выполнение точных и тонких движений.

Мышцы, которые выполняют относительно грубые движения, к примеру, большие мышцы конечности. Как правило, такие мышцы имею меньшее количество двигательных единиц, но число волокон у них больше. Так, к примеру, бицепс в своем составе содержит больше миллиона волокон. Данные волокна вместе с нервными окончаниями образуют больше, чем шестьсот двигательных единиц.

В мышцах спины до двух тысяч и в большеберцовой кости примерно полторы тысячи мышечных волокон иннервируются передним рогом, образуя тем самым двигательную единицу в каждом случае.

Но число волокон в двигательных единицах какой-то мышцы не может быть одинаковым, к примеру, в бицепсе может быть 1600, 1400, 1200 или 1000 волокон.

Принадлежность волокон к двигательной единице задается от природы и не меняется тренировками.

Сила двигательных единиц мышц зависит от количества мышечных волокон. Двигательные единицы, в которых небольшое количество волокон, при сокращении развивают силу тяги только в несколько миллиньютонов, а двигательные единицы, у которых большое количество волокон, развивают несколько ньютонов. Силовой потенциал какой-либо двигательной единицы не очень большой, поэтому для того, чтобы выполнить движения одновременно, подключаются сразу несколько единиц. Чем выше будет сопротивление, тем большее количество двигательных единиц выполняет движение.

У каждой двигательной единицы есть свой порог возбуждения, который может являться высоким или низким. Если слабый импульсный залп, то активизируются только двигательные единицы, которые обладают низким порогом возбудимости. Если данный залп начинает усиливаться, то реагируют дополнительные двигательные единицы, у которых порог возбуждения более высокий.

С повышением сопротивления активизируется больше двигательных единиц. Быстрота порогов возбуждения зависит от состояния двигательных единиц.

text_fields

text_fields

arrow_upward

Мышечные волокна каждой Двигательной единицы (ДЕ) расположены на довольно значительном расстоянии друг от друга. Число мышечных волокон, входящих в одну ДЕ, отличается в разных мышцах. Оно меньше в мелких мышцах, осуществляющих тонкую и плавную регуляцию двигательной функции (например, мышцы кисти, глаза) и больше в крупных, не требующих столь точного контроля (икроножная мышца, мышцы спины). Так, в частности, в глазных мышцах одна ДЕ содержит 13-20 мышечных волокон, а ДЕ внутрен­ней головки икроножной мышцы - 1500-2500.

Рис.4.8. Двигательные единицы (ДЕ) мышцы и их типы.

Мышечные волокна одной ДЕ имеют одинаковые морфофункциональные свойства.

По морфофункциональным свойствам ДЕ делятся на три основ­ных типа (рис.4.8.):

I - медленные, неутомляемые;
II-А - быстрые, устойчивые к утомлению:
II-В - быстрые, легко утомляемые.

1 — медленные, слабые, неутомляемые мышечные волокна.
Низкий порог активации мотонейрона;
2 — промежуточный тип ДЕ;
3 — быстрые, сильные, быстроутомляемые мышечные
волокна. Высокий порог активаций мотонейрона.

Ске­летные мышцы человека состоят из ДЕ всех трех типов. Одни из них включают преимущественно медленные ДЕ, другие - быстрые, третьи - и те, и другие.

Медленные, неутомляемые двигательные единицы (тип I)

text_fields

text_fields

arrow_upward

По срав­нению с другими типами ДЕ у этих ДЕ наименьшие величины мотонейронов и, соответственно, наиболее низкие пороги их активации, меньшие толщина аксона и скорость проведения возбужде­ния по нему. Аксон разветвляется на небольшое число концевых веточек и иннервирует небольшую группу мышечных волокон. У мотонейронов медленных ДЕ сравнительно низкая частота разрядов (6-10 имп/с). Они начинают функционировать уже при малых мышечных усилиях. Так, мотонейроны ДЕ камбаловидной мышцы человека при удобном стоянии работают с частотой 4 имп/с. Ус­тойчивая частота их импульсации составляет 6- 8 имп/с. С повыше­нием силы сокращения мышцы частота разрядов мотонейронов мед­ленных ДЕ повышается незначительно. Мотонейроны медленных ДЕ способны поддерживать постоянную частоту разрядов в течение десятков минут.

Мышечные волокна медленных ДЕ развивают небольшую силу при сокращении в связи с наличием в них меньшего, по сравнению с быстрыми волокнами, количества миофибрилл. Скорость сокращения этих волокон в 1,5-2 раза меньше, чем быстрых. Основными при­чинами этого являются низкая активность миозин АТФ-азы и мень­шие скорость выхода ионов кальция из саркоплазматического ре-тикулума и его связывания с тропонином в процессе возбуждения волокна.

Мышечные волокна медленных ДЕ малоутомляемы. Они обладают хорошо развитой капиллярной сетью. На одно мышечное волокно, в среднем, приходится 4- 6 капилляров. Благодаря этому во время сокращения они обеспечиваются достаточным количеством кислоро­да. В их цитоплазме имеется большое количество митохондрий и высокая активность окислительных ферментов. Все это определяет существенную аэробную выносливость данных мышечных волокон и позволяет выполнять работу умеренной мощности длительное время без утомления.

Быстрые, легко утомляемые ДЕ (тип II-В)

text_fields

text_fields

arrow_upward

Из всех типов ДЕ мотонейроны этого типа наиболее крупные, имеют толстый аксон, разветвляющийся на большое число концевых веточек и иннервирующий соответственно большую группу мышечных волокон. По сравнению с другими эти мотонейроны обладают наиболее высоким порогом возбуждения, а их аксоны - большей скоростью проведе­ния нервных импульсов.

Частота импульсации мотонейронов возрастает с ростом силы сокращения, достигая при максимальных напряжениях мышцы 25-50 имп/с. Эти мотонейроны не способны в течение длительного времени поддерживать устойчивую частоту разрядов, то есть быстро утомляются.

Мышечные волокна быстрых ДЕ, в отличие от медленных, содер­жат большее число сократительных элементов - миофибрилл, поэ­тому при сокращении развивают большую силу. Благодаря высокой активности миозиновой АТФ-азы у них выше скорость сокращения. Волокна этого типа содержат больше гликолитических ферментов, меньше митохондрий и миоглобина, окружены меньшим, по срав­нению с медленными ДЕ, количеством капилляров. Эти волокна быстро утомляются. Более всего они приспособлены для выполнения кратковременной, но мощной работы (см. главу 27).

Быстрые, устойчивые к утомлению ДЕ (тип II-А)

text_fields

text_fields

arrow_upward

По своим морфофункциональным свойствам этот тип мышечных волокон за­нимает промежуточные положения между ДЕ I и II- В типов. Это сильные, быстро сокращающиеся волокна, обладающие большой аэробной выносливостью благодаря присущей им возможности ис­пользовать для получения энергии как аэробные, так и анаэробные процессы.

У разных людей соотношение числа медленных и быстрых ДЕ в одной и той же мышце определено генетически и может отличаться весьма значительно. Так, например, в четырехглавой мышце бедра человека процент медленных волокон может варьировать от 40 до 98%. Чем больше в мышце процент медленных волокон, тем более она приспособлена к работе на выносливость. И наоборот, лица с высоким процентом быстрых сильных волокон в большей мере способны к работе, требующей большой силы и скорости сокращения мышц.

Совокупность мотонейрона и иннервируемых им мышечных волокон называют двигательной (нейромоторной) единицей. Число мышечных волокон двигательной единицы варь­ирует в широких пределах в разных мышцах. Двигательные едини­цы невелики в мышцах, приспособленных для быстрых движений, от нескольких мышечных волокон до нескольких десятков их (мыш­цы пальцев, глаза, языка). Наоборот, в мышцах, осуществляющих медленные движения (поддержаниеттозы мышцами туловища), дви­гательные единицы велики и включают сотни и тысячи мышечных волокон.

При сокращении мышцы в натуральных (естественных) усло­виях можно зарегистрировать ее электрическую активность (элек-тромиограмму - ЭМГ) с помощью игольчатых или накожных элек­тродов. В абсолютно расслабленной мышце электрическая активность почти отсутствует. При небольшом напряжении, напри­мер при поддержании позы, двигательные единицы разряжаются с небольшой частотой (5-10 имп/с), при большом напряжении час­тота импульсации повышается в среднем до 20-30 имп/с. ЭМГ по­зволяет судить о функциональной способности нейромоторных еди­ниц. С функциональной точки зрения двигательные единицы разделяют на медленные и быстрые.

Медленные двигательные единицы включают медленные мотонейроны и медленные мышечные волокна (красные). Медлен­ные мотонейроны, как правило, низкопороговые, так как обычно это малые мотонейроны. Устойчивый уровень импульсации у мед­ленных мотонейронов наблюдается уже при очень слабых стати­ческих сокращениях мышц, при поддержании позы. Медленные мо­тонейроны способны поддерживать длительный разряд без заметного снижения частоты импульсации на протяжении длитель­ного времени. Поэтому их называют малоутомляемыми или не-утомляемыми мотонейронами. В окружении медленных мышеч­ных волокон богатая капиллярная сеть, позволяющая получать большое количество кислорода из крови. Повышенное содержание миоглобина облегчает транспорт кислорода в мышечных клетках к митохондриям. Миоглобин обусловливает красный цвет этих во­локон. Кроме того, волокна содержат большое количество митохон­дрий и субстратов окисления - жиров. Все это обусловливает ис­пользование медленными мышечными волокнами более эффективного аэробного окислительного пути энергопродукции и определяет их высокую выносливость.

Быстрые двигательные единицы состоят из быстрых мото­нейронов и быстрых мышечных волокон. Быстрые высокопорого­вые мотонейроны включаются в активность только для обеспече­ния относительно больших по силе статических и динамических сокращений мышц, а также в начале любых сокращений, чтобы увеличить скорость нарастания напряжения мышцы или сообщить движущейся части тела необходимое ускорение. Чем больше ско­рость и сила движений, т. е. чем больше мощность сократительно­го акта, тем больше участие быстрых двигательных единиц. Быст­рые мотонейроны относятся к утомляемым - они не способны к длительному поддержанию высокочастотного разряда.


Быстрые мышечные волокна (белые мышечные волокна) более толстые, содержат больше миофибрилл, обладают большей силой, чем медленные волокна. Эти волокна окружает меньше капилля­ров, в клетках меньше митохондрий, миоглобина и жиров. Актив­ность окислительных ферментов в быстрых волокнах ниже, чем в медленных, однако активность гликолитических ферментов, запа сы гликогена выше. Эти волокна не обладают большой выносливо­стью и более приспособлены для мощных, но относительно крат­ковременных сокращений. Активность быстрых волокон имеет зна­чение для выполнения кратковременной высокоинтенсивной работы, например бега на короткие дистанции.

Выделяют также тонические мышечные волокна, они имеют 7-10 синапсов, принадлежащих, как правило, нескольким мотонейронам. ПКП этих мышечных волокон не вызывает генера­цию ПД в них, а непосредственно запускает мышечное сокраще­ние.

Скорость сокращения мышечных волокон находится в прямой зависимости от активности миозин-АТФ-азы - фермента, расщеп­ляющего АТФ и тем самым способствующего образованию попе­речных мостиков и взаимодействию актиновых и миозиновых мио-филаментов. Более высокая активность этого фермента в быстрых мышечных волокнах обеспечивает и более высокую скорость их сокращения по сравнению с медленными волокнами.

Двигательная единица включает двигательный нейрон вместе с иннервируемой им группой мышечных волокон. В разных мышцах двигательные единицы включают разное количество мышечных волокон. Так, в глазодвигательных мышцах на 1 нейрон приходится около 10 мышечных волокон, а в крупных мышцах туловища – больше 1000 волокон. Малые двигательные единицы обеспечивают быстрые и точные движения. Различают 3 типа двигательных единиц: быстрый, утомляемый; медленный, малоутомляемый; быстрый малоутомляемый. В любой мышце есть все типы волокон, но в разном соотношении. В мышцах спортсменов-спринтеров наблюдается больше быстрых мышечных волокон, а у стайеров – больше медленных мышечных волокон. Быстрые волокна хуже кровоснабжаются, поэтому способны к кратковременной работе. Медленные волокна обильно кровоснабжаются и могут длительно работать без утомления. Тела двигательных нейронов медленных двигательных единиц имеют небольшой размер и низкий порог возбудимости, т. е. могут быть активированы даже слабыми сигналами. Тела двигательных нейронов быстрых двигательных единиц более крупные, но менее возбудимые, они включаются, когда нужно развить большую силу.

Механизм передачи возбуждения в центральных синапсах, возбуждающие медиаторы, формирование возбуждающего постсинаптического потенциала (ВПСП). Значение хеморегулируемых и потенциалзависимых ионных каналов.

Механизм передачи возбуждения в синапсе . Медиаторы – это химические посредники передачи информации в синапсе с одного нейрона на другой. Выделение медиатора из пресинаптического окончания возможно только, если пресинаптическая мембрана будет деполяризована поступившими к нервному окончанию импульсами. В пресинаптической мембране есть каналы для ионов кальция, которые при отсутствии возбуждения закрыты. Ионы кальция играют определяющую роль в выделении медиатора. При деполяризации пресинаптической мембраны пришедшем сюда возбуждением кальциевые каналы открываются, кальций из синаптической щели поступает в пресинаптическое окончание, обеспечивает слияние медиаторных пузырьков с пресинаптической мембраной и выделение медиатора в синаптическую щель. Выделившийся в синаптическую щель медиатор перемещается к постсинаптической мембране, там он связывается со специфическими рецепторами, выполняющими одновременно роль ионных каналов. Образовавшийся комплекс «медиатор – рецептор» повышает проницаемость постсинаптической мембраны для определенных ионов, в результате меняется разность потенциалов на постсинаптической мембране и формируется постсинаптический потенциал. В зависимости от природы медиатора и характера связывающих его рецепторов постсинаптическая мембрана может быть деполяризована, что характерно для возбуждающих синапсов или гиперполяризована, что типично для тормозных синапсов. Возбуждающий постсинаптический потенциал (ВПСП) формируется на постсинаптической мембране в ответ на действие возбуждающих медиаторов. К таким медиаторам относят: ацетилхолин, норадреналин, дофамин, серотонин. Медиатор взаимодействует с рецепторами постсинаптической мембраны как ключ с замком, т. е для каждого медиатора существует определенный тип рецепторов. В результате взаимодействия медиатора с рецепторами постсинаптической мембраны открываются натриевые каналы (возможно участие и кальциевых каналов). Натрий поступает внутрь клетки через постсинаптическую мембрану и деполяризует ее. Возникшая разность потенциалов на постсинаптической мембране называется возбуждающим постсинаптическим потенциалом. Если его величина будет достаточной, то во внесинаптической части мембраны нейрона формируются потенциалы действия. Прекращение действия медиатора обусловлено удалением его из синаптической щели либо за счет обратного «захвата» структурами пресинаптического окончания, либо разрушения его специальными ферментами постсинаптической мембраны. В синапсах может развиваться процесс торможения, о чем будет сказано далее.



14. Торможение в ЦНС и его физиологическая роль. Учение И. М. Сеченова о центральном торможении. Тормозные медиаторы. Механизмы пре- и постсинаптического торможения .

Впервые о торможение как о процессе в центральной нервной системе высказался И. М. Сеченов (1863 год). Раздражая кристалликами поваренной соли область таламуса у лягушки, Сеченов отметил замедление двигательной реакции. Он пришел к выводу, что в центральной нервной системе развивается процесс торможения и соответственно есть тормозные центры. Этот вид торможения был назван Сеченовым центральным. Постсинаптическое торможение развивается, если тормозной нейрон формирует синапсы либо на дендритах, либо на теле возбуждающего нейрона. Синапсы имеют те же структурные элементы: пре-, постсинаптическую мембрану, синаптическую щель и медиаторы. Только в данном случае участвуют тормозные медиаторы: ГАМК, глицин, ацитилхолин и др. Медиаторы вызывают на постсинаптической мембране изменение проницаемости не для натрия, а либо для хлора, либо для калия через активацию соответствующих рецепторов и открытие хемозависимых ионных каналов. Если открываются каналы для ионов Cl - , он проходит через постсинаптическую мембрану внутрь и гиперполяризует её. В результате величина мембранного потенциала возрастает, а возбудимость снижается. Если в тормозном синапсе активируются каналы дляK + , то по градиенту он выходит на поверхность постсинаптической мембраны, которая также гиперполяризуется. Величина гиперполяризации называется тормозным постсинаптическим потенциалом (ТПСП), а вид торможения - постсинаптическим. Пресинаптическое торможение наблюдается в аксо-аксональных синапсах. Здесь аксон тормозного нейрона образует синапс на аксоне возбуждающего нейрона, еще до его синапса с другим нейроном. Поэтому торможение и называется пресинаптическим. Этот вид торможения блокирует прохождение возбуждение по аксону и имеет значение для фильтрации информации в сенсорных нейронах. Роль торможения в центральной нервной системе. Торможение обеспечивает: упорядоченность распространения возбуждения; согласованность во взаимодействии центров; защитную, охранительную роль от перевозбуждения. Важность торможения доказывают примеры: при столбняке или при отравлении стрихнином в нервной системе блокируются тормозные синапсы, поэтому возбуждение приобретает неупорядоченный характер, в результате развиваются мышечные судороги и наступает смерть. Торможение – это процесс возбуждения специализированных нейронов, приводящий к угнетению развития и распространения возбуждения. Важно помнить что торможение – это локальный, местный не распространяющийся процесс, в отличие от возбуждения.

Выше была рассмотрена лишь общая схема явлений, лежащих в основе тетанического сокращения. Для того чтобы более подробно познакомится с тем, как этот процесс совершается в условиях естественной деятельности организма, необходимо остановиться на некоторых особенностях иннервации скелетной мышцы двигательным нервом.

Каждое моторное волокно, являющееся отростком двигательной клетки передних рогов спинного мозга, иннервирует не одно, а целую группу мышечных волокон. Такая группа получила название моторной единицы . Количество мышечных волокон, входящих в состав моторной единицы в разных мышцах человека, варьирует от 10 до 3000.

Наименьшее число волокон содержится в моторных единицах быстрых мышц,обеспечивающих наиболее точные движения. Так, в глазных мышцах и мышцах пальцев руки моторные единицы имеют в своём составе 10-25 мышечных волокон, причем каждое из них получает иннервацию со стороны нескольких нервных волокон. В отличие от этого относительно медленные мышцы, участвующие в регуляции позы тела и ненуждающиеся в точном контроле, состоят из моторных единиц, включающих в свой состав от 2000 до 3000 волокон. Моторные единицы икроножной мышцы содержат около 1500 волокон.

Вследствие того что скорость распространения возбуждения в нервных волокнах, иннервирующих скелетные мышцы, очень велика, мышечные волокна, составляющие моторную единицу, приходят в состояние возбуждения практически одновременно. Электрическая активность моторной единицы имеет вид частокола (рис. 146, А ), в котором каждому пику соответствует суммарный потенциал действия многих одновременно возбужденных волокон.

Суммация сокращений моторных единиц в целой мышце . В отличие от мышечных волокон каждой моторной единицы, синхронно, т. е. одновременно, возбуждающихся в ответ на приходящий импульс, мышечные волокна различных моторных единиц мышцы, как правило, работают асинхронно. Объясняется это тем, что моторные единицы иннервируются различными двигательными нейронами, которые посылают импульсы с разной частотой и разновременно. Несмотря на неодновременность начала и конца сокращения различных моторных единиц, суммарное сокращение мышцы в целом имеет в условиях нормальной деятельности слитный характер, по форме своей напоминающий гладкий тетанус, даже в том случае, когда каждая из моторных единиц работает в редком ритме (например, 5 сокращений в секунду).

Таким образом, при асинхронной деятельности моторных единиц, обусловленной асинхронной работой соответствующих нейронов спинного мозга, все движения нашего тела имеют плавный характер уже при малой частоте двигательной импульсации. Асинхронная деятельность моторных единиц не позволяет различать электрическую активность каждой из них при отведении потенциалов от целой мышцы: неодновременно возникающие пики потенциалов действия алгебраически суммируются (интерферируют) на электродах, вследствие чего возникает сложная картина, по которой можно лишь косвенно судить о степени возбуждения дельных мышечных волокон (см. рис. 146, Б ).

В покос моторные единицы мышц конечностей человека обнаруживают лишь очень редкие разряды потенциалов действия. Это обусловливает тонус мышц. При небольшом напряжении появляются разряды с частотой 5-10 в секунду. Повышение напряжения увеличивает частоту следования потенциалов действия до 20-50 в секунду.

Сила мышечного сокращения зависит от числа моторных единиц, вовлекаемых одновременно в реакцию, и от частоты возбуждения каждой из них.