Бег

Какие глаза у рыб сложные или простые. Какое зрение у рыб. Зрение у рыб хищников

Закройте один глаз! Теперь откройте и закройте другой. Что вы видели? Практически одно и то же - и правым и левым глазом, ведь обоими глазами вы смотрите вперед. Теперь представьте, что то же самое проделает рыба. Закроет правый глаз - увидит то, что находится с левой стороны от нее, закроет левый - увидит то, что с правой. Но ведь рыба не может закрывать глаза - значит, она одновременно смотрит и вправо и влево! И видит совсем разные картины. Как же рыба в них разбирается?

Расположенные на разных сторонах головы, глаза рыбы приспособлены к монокулярному зрению, так как шаровидный хрусталик далеко сдвинут вперед, к самой роговице (рис.1), в глаз проникают лучи не только спереди, но также сверху и с боков, - и поэтому поле зрения рыбы весьма обширно!

Рис.1.

Считая вместе с движением глаз, угол зрения охватывает по горизонтали 166-170°, по вертикали - около 150°; а бинокулярное зрение возможно только в очень ограниченном поле (приблизительно 130°). И именно в этом поле рыба ясно различает предметы. Положение глаз рыбы служит в этом отношении определяющим фактором. Если рыба хочет рассмотреть объект, она вынуждена быстро развернуться, чтобы он оказался в поле зрения обоих глаз - в узком конусообразной формы бинокулярном пространстве (рис.2).

Рис.2.

Предметы, находящиеся над поверхностью воды, рыба способна видеть через так называемое «зрительное окно». Это окно равняется окружности на поверхности воды, образованной углом в 97,6° с вершиной, расположенной в точке нахождения рыбы (рис.3).

Рис.3.

Через это окно рыбы видят от зенита до горизонта во всех направлениях. Это полусферическое зрительное поле содержит все предметы, находящиеся над плоскостью, касательной к поверхности воды у края окна. Но искажение и яркость предметов весьма различны. Предметы, находящиеся прямо над головой, кажутся больше (они воспринимаются рыбой почти без искажений), и следует помнить об этом при ловле пугливых рыб. По мере опускания предмета по меридиану воздушной полусферы к горизонту, его изображение будет уменьшаться как в ширину, так и в длину и в то же время искажаться, хотя линейное расстояние от рыбы до предмета неизменно. Предмет становится видимым более смутно в связи с тем, что лучи, образующие с поверхностью воды все меньший угол, сильно отражаются от поверхности и только частично попадают в глаз рыбе. Явление преломления света вызывает также расхождение между истинным и наблюдаемым местоположением предмета в пространстве. При этом наибольшее расхождение между ними будет при угле падения лучей света в 45°, уменьшаясь по мере приближения к 90°.

В отличие от прочих животных, у рыбы глаз имеет эллипсоидную форму и снабжен плоской роговицей. Преломляющая сила глаза зависит не только от кривизны роговицы и хрусталика, но и от свойств материала, из которого они состоят, а роговица у рыб, как и у человека, не способна в воде преломлять световые лучи.

В большинстве своем рыбы близоруки - они хорошо видят только на близком расстоянии - около 1 м, а дальше 10-12 м вообще ничего увидеть не могут. В сетчатке у костистых рыб имеются специальные воспринимающие элементы - колбочки и палочки. Причем у рыб дневных преобладают колбочки, а у добывающих пищу в сумерки и ночью - изобилуют палочки: так, у ночного налима насчитывается 260 палочек на той же площади, где у щуки имеется всего 18! На свету состояние сетчатки изменяется: колбочки выдвигаются к свету, и наоборот, в сумерки к свету сдвигаются палочки.

У рыб (как и у людей) различная концентрация световоспринимающих элементов приводит к тому, что они видят отчетливо только специально рассматриваемый предмет. Хищным рыбам, подстерегающим свою добычу, необходимо очень широкое поле зрения, чтобы хорошо видеть достаточно обширный участок, и им такое зрение не очень подходит. Однако и здесь природа нашла выход - световоспринимающие приборы глаза устроены так, что они способны передавать в мозг информацию не об интенсивности падающего на них света, а лишь о характере изменения освещенности. Как только произойдет хоть малейшее изменение освещенности палочек и колбочек, они немедленно телеграфируют об этом мозгу и ждут следующих изменений, чтобы дать следующую телеграмму. И так всю жизнь.

У большинства хищных рыб очень сильна двигательная пищевая реакция на движение объектов питания. Формами защиты рыб-жертв от рыб-хищников являются образование стай, неподвижность и т.д. Чтобы спастись от хищников, мирные рыбы должны издали увидеть приближающуюся опасность, поэтому малейшая, едва заметная подвижность крупных объектов, их силуэтов, теней и неясные мелькания хорошо воспринимаются этими рыбами и вызывают у них оборонительную реакцию. Так что во время рыбалки учитывайте эти особенности зрения нехищных рыб и постарайтесь своим страшным видом и не менее страшной тенью их не распугать. Кстати, именно эта четко выраженная защитная реакция на тень лежит в основе способа ловли кефали на рогожку.

Когда вы ловите на блесну, живца или другую двигающуюся приманку, учитывайте еще один важный фактор. Восприятие движений рыбами можно измерить в так называемых оптических моментах, которые характеризуются способностью рыб воспринимать прерывистость света. Оптический момент человека равен 1/18-1/24 с. Это значит, что, когда в зрительном поле человека проходит 18-24 одинаковых предмета в секунду, они сливаются вместе, принимая вид неподвижной линии. По мере уменьшения этой скорости последовательно движущиеся предметы воспринимаются сначала как мелькание, а затем как отдельные перемещающиеся предметы. Ихтиологи определяют оптические моменты с помощью специальной оптомоторной установки. Например, у черноморских рыб, а также леща и окуня они вдвое меньше, чем у человека (1/57-1/67 с), это означает, что по сравнению с человеком рыбы способны воспринимать вдвое более быстрые движения. У пресноводных: гольяна, линя, карася, толстолобика, щуки и верховки оптический момент примерно вдвое больший (1/18-1/27 с). Такое разнообразие оптических моментов у рыб связано, по-видимому, с различным восприятием движений. Небольшие величины оптических моментов позволяют некоторым «зрительным рыбам» успешно питаться подвижными объектами и избегать своих врагов. Любой движущийся предмет, размеры которого меньше или равны величине рыбы, являются зрительным пищевым сигналом, а движущийся предмет большего размера - зрительным оборонительным сигналом. Практически все рыбы реагируют на движущуюся тень, но восприятие движений и характер ответных реакций зависят от образа жизни рыб. С этим связана более грубая способность восприятия движений у пресноводных малоподвижных рыб - карася и толстолобика, питающихся неподвижными и малоподвижными объектами. Именно небольшими оптическими моментами можно объяснить, почему при ловле с катеров или спиннингом крючки остаются пустыми - рыбы или не замечают проносящуюся на большой скорости приманку, или она действует на них отпугивающе, а вы так старались!

Конечно, калькулятор и компьютер на рыбалку брать не надо, лучше внимательнее присмотреться к тому, как и чем питаются рыбы.

Оказывается, рыбьи глаза способны идентифицировать большинство геометрических фигур. На выбор рыбой пищевых приманок значительное влияние оказывает их форма. Ихтиологами применялись приманки примерно одинакового размера следующих форм: шар, конус, треугольник, квадрат, параллелепипед, червеобразная, звезда и т.д. Все предлагаемые формы, за исключением звезды, воспринимались рыбами положительно. Вероятно, необычность формы звезды их отпугивает, так как даже очень голодные рыбы избегали хватать ее.

А воспринимают ли рыбы цвет? Прежде считали, что различение цветов в воде невозможно. Но еще в середине XX в. Карл Фриш успешно вырабатывал условные рефлексы пескаря на определенный цвет, давая корм всегда в красной мисочке с одновременным выкладыванием пустых черной, серой и белой мисок. Очень скоро пескари научились подплывать прямо к красной миске. Было доказано, что для цветового зрения рыбам служат колбочки.

Эксперименты по исследованию цветового зрения у рыб были продолжены многими ихтиологами и проводятся до сих пор. Шименц установил, что рыбы воспринимают ультрафиолетовые лучи как цветовые, отличая их от прочих. Если вспомнить, что ультрафиолет проникает глубже других лучей, то представление о полной темноте глубин до 1500 м не будет правильным. Кстати, Гертер дрессировал рыб не только на разный цвет, но и на определенную форму, и даже на буквы R и L.

Но это все ученые. А что же говорят рыболовы? Например, насадку с красным червем окуни берут охотнее, чем с белым, а белугу, наоборот, привлекает белый цвет. Раньше на Каспийском море существовал браконьерский лов белуги «на каладу». На большие крючки насаживались куски белой клеенки в форме треугольника. Возможно, что белуга принимает насадку за белую ракушку и берет ее. Издавна рыболовы окрашивают свои сети в малозаметные для рыб цвета.

К сожалению, на наличие цветового зрения исследованы на сегодняшний день не все виды рыб, но точно известно, что цвета различают речная минога, мойва, треска, пикша, сайда, полосатая зубатка, подкаменщик, камбала-ерш, кефаль, хамса, ставрида, морской и речной налим, барабулька, лещ, щука, речной окунь, золотой карась, линь, сазан, речной угорь, ушастый окунь, гольян и некоторые другие рыбы. Еще было установлено, что рыбы, выращенные на разных кормах, предпочитают разные цвета пищи.

Кстати, не забывайте, что рыбы, очутившиеся на берегу, не утрачивают способности видеть. Угорь переползает из одного водоема в другой. Выброшенные на берег лосось или щука свои движения направляют так, чтобы снова очутиться в водоеме. Так что будьте аккуратны и не разбрасывайте рыб вдоль берега, а то добыча вам только хвостом махнет!


Органическая жизнь - часть природы. Поэтому все живые организмы на Земле существуют в тесном взаимодействии с окружающей средой. Система органической и неорганической жизни на Земле достаточно устойчива в значительной степени благодаря способности живых организмов чутко реагировать на малейшие изменения внешней среды. Смысл этой реакции заключается в том, чтобы поддерживать состояние организма максимально адекватным окружающей среде. Если функциональных возможностей организма для приспособления к изменению среды не хватает, то для выживания потребуются органические изменения, которые в случае их безусловной пользы для вида закрепляются генетически. Именно так исторически возникали важнейшие ароморфозы, на основе которых осуществлялось видообразование.

Таким образом, своевременная рецепция изменений параметр ров внешней (и внутренней) среды - жизненно важная функция любого индивидуума, а также вида в целом.

Поэтому раздражимость является одним из основных признаков живого, обязательным свойством всех живых (растительных и животных) клеток. Благодаря ей все живые существа объединяются с окружающим миром как бы в единое информационное поле, нарушение которого пагубно отражается на индивидууме популяции, виде и биосе в целом. Раздражимость является унифицированной реакцией клеток и тканей организма на изменения внешней среды. На организм из внешней среды действуют слишком много раздражителей, отличающихся качественно и количественно. Поэтому реактивность организма должна быть избирательной.

Рыбы воспринимают большое количество сигналов из внешней среды: от ионных до механических. В физиологии стимулы внешней среды принято делить на благоприятные и неблагоприятные (табл. 2.1). Строго говоря, это деление с точки зрения эволюционного развития нелепо, так как любая информация из внешней среды животному необходима для своевременной адекватной рН акции. Это тот случай, когда справедливо высказывание "проинформирован - значит защищен".

Внешние стимулы, воспринимаемые рыбами

Электромагнитная и тепловая энергия Свет

Тепло/холод Электричество Магнитная энергия

Механическая энергия Звук/вибрация

Давление/осмотическое давление

Гравитация

Прикосновение

Химические факторы

Влажность

На большое значение факторов внешней среды для нормального функционирования животного организма указывал патриарх физиологии И. П. Павлов. В его "башне молчания" создавалась полнейшая изоляция животного от внешнего мира. В отсутствие внешних раздражителей у подопытных животных развивались психические патологии,

У рыб контакт с внешней средой еще более плотный, чем у высших позвоночных. Поэтому и контроль за изменениями во внешней среде у рыб должен быть более чутким. Этому способствует хорошо развитый рецепторный аппарат. Рыбы реагируют на видимый человеком свет, электромагнитные поля, гравитационное поле Земли, низко- и высокочастотные колебания среды, атмосферное давление, образование волн на поверхности водоема, химический состав воды, изменение скорости потока воды, ее температуры, механическое раздражение. Практически все известные человеку физико-химические и биотические изменения, возникающие в водоеме, рецептируются рыбой посредством хорошо развитых сенсорных систем.

Мощный афферентный поток, исходящий от органов зрения, акустико-латеральной системы, органов химической рецепции, механорецепторов, проприорецепторов, электрорецепторов, магниторецепторов, терморецепторов, органов рецепции давления, стекается в центральную нервную систему, где подвергается анализу, на основании которого принимается оптимальное решение метаболического или этологического характера. Такой мониторинг за изменениями окружающей среды позволяет рыбе с наибольшей биологической эффективностью адаптировать свой обмен веществ или запустить локомоторные реакции с целью удовлетворения индивидуальных физиологических потребностей и в конечном счете биологических потребностей стаи, популяции, вида в целом, распознавать наиболее важные сигналы из внешнего мира и адекватно на них реагировать. Другая информация из внешнего мира, менее значимая на данный момент, либо вообще не воспринимается, либо как бы принимается к сведению, но не сопровождается сомато-вегетативными реакциями животных.

Рис. 2.1. Общая схема восприятия раздражителей из окружающей среды рыбами

Для восприятия и анализа наиболее важных сведений из внешней среды эволюция снабдила животных высокоспециализированными структурами - сенсорными системами, которые обладают высокой чувствительностью и избирательной реактивности по отношению к свету, звуку, химическому составу и температуре окружающей среды, электромагнитному полю, изменению гравитации, давления, Сенсорная система включает в себя рецепторный аппарат (глаз, ухо, ампулы Лоренцини и др.) и анализирующий аппарат в составе центральной нервной системы (рис. 2.1).

Обращает на себя внимание то, что сенсорные органы у рыб не так четко дифференцированы по функциям, как у высших позвоночных. Например, у рыб трудно назвать орган слуха. Экспериментально установлено, что рыбы реагируют на звук. Но за восприятие колебаний воды у рыбы отвечают несколько органов: боковая линия, лабиринт, плавательный пузырь, а у пластинчатожаберных еще и особые образования - ампулы Лоренцини на голове и окончаниях лицевого нерва. Более того, термин "органы чувств" применительно к рыбам зачастую лишен первоначального смысла, так как сенсорная информация может и не поступать в центральную нервную систему. В этом случае она не подвергается чувственной оценке, следовательно, и структуры, отвечающие за эту рецепцию факторов внешней среды, нельзя называть органами чувств.

Тем не менее сенсорные системы рыб обеспечивают надежную связь между водной средой и организмом рыбы. Тот факт, что при отсутствии больших полушарий мозга (и тем более кортикальных структур) рыбы проявляют эмоциональные реакции на действие раздражителей из внешней среды, за формирование которых у рыб отвечает лимбическая система, оправдывает применение термина "сенсорные" (чувственные) системы при изучении физиологии рыб.

Зрение рыб

Под зрением принято понимать способность к рецепции электромагнитного излучения определенного (воспринимаемого глазом человека) спектра (рис. 2.2.). В ряду сенсорных органов рыб органам зрения принадлежит особая роль. Свет ввиду своей высокой скорости и прямолинейности распространения обеспечивает животное уникальной информацией. Органы зрения информируют животное одновременно о месте расположения, контурах, величине, подвижности или неподвижности объекта, направлении движения и его удаленности от животного. Источником света является Солнце. Все жизненные ритмы рыб прямо или опосредованно связаны с цикличностью солнечной активности. Поэтому фоторецепция- это и пусковой механизм биологических циклов. Экспериментально установлено, то видимый для рыб спектр электромагнитного излучения лежит в той же зоне, что и у высших позвоночных. Однако водная среда определенным образом изменяет диапазон восприятия электромагнитного излучения. Так, инфракрасные лучи (ИК) не проникают в воду, поэтому не воспринимаются глазом рыб.

Рис. 2.2. Место видимого света в спектре электромагнитных излучений

Ультрафиолетовые лучи (УФ) также рыбами не воспринимаются, хотя в свое время экспериментально удавалось выработать условный рефлекс у некоторых видов на этот тип излучений. Впоследствии было установлено, что глаз рыбы не способен к восприятию ультрафиолетовых лучей. Однако они могут создавать эффект флюоресценции различных органических и неорганических частиц в воде, на что рыбы и реагируют.

Будучи непрозрачными телами, рыбы создают в воде характерные оптические поля благодаря способности рассеивать света воде. Важную роль здесь играет и форма тела рыбы. Уплощение тела в вертикальной плоскости уменьшает оптическое поле для наблюдателя, располагающегося ниже рыбы. Горизонтальное уплощение, наоборот, увеличивает оптическое поле рыбы и делает ее более заметной для обитателей нижних горизонтов водоема. Для большинства пелагических рыб характерны округлые формы дорсальной и латеральных поверхностей тела. Их маскировка обеспечивается неодинаковым расположением отражающих пластин и, следовательно, более или менее равномерным рассеиванием света в разных направлениях.

Рассеивание света возникает благодаря особым оптическим свойствам как наружных покровов рыб, так и среды их обитания. В разных водоемах при различной их освещенности (характер облачности, расположение солнца относительно горизонта, сезон года) оптическое поле одной и той же особи будет иметь разные характеристики (рис. 2.3). Имеет значение и местоположение наблюдателя.

Отражающая поверхность рыб формируется прежде всего, структурой их кожи. В наружных слоях кожи рыб располагаются кристаллы гуанина и гипоксината, которые имеют вид тонких блестящих пластин - своеобразных микроскопических зеркал обладающих высокой отражательной способностью. Эти миниатюрные зеркала не только отражают свет с определенной длиной волны, но и производят его поляризацию. Благодаря этим кожным структурам рыбы имеют серебристую окраску тела.

Под и над отражательными пластинами гуанина и гипоксината располагается большое количество меланофоров и иридоцитов - структур, отвечающих за цветовую окраску тела рыбы. В результате взаимодействия отражающих пластин и пигментации кожи возникает специфический оптический эффект. Именно поэтому субъективная оценка окраски рыб бывает столь неоднозначной. Данное явление хорошо известно аквариумистам, которые для демонстрации эффектной цветовой гаммы рыб используют источники света с разными характеристиками; устанавливают их под разными углами по отношению к наблюдаемому объекту, применяют светоотражающие и светопоглощающие ширмы, грунты и прочее оборудование аквариума.

Таким образом, задача аквариумиста прямо противоположна той, что стоит перед рыбой в естественной среде обитания. Аквариумист, демонстрируя рыб на выставке, создает максимальное оптическое поле рыбы. В природных условиях рыба миниминизирует свое оптическое поле, так как у пелагической рыбы другая биологическая задача - стать наименее заметной для хищника.

Рис. 2.3. Оптическое поле рыбы при различных условиях: а - влияние солнечного света и толщи воды; б и в - влияние расположения наблюдателя. Интенсивность отраженного света (R) характеризует длина стрелки

В случае если стратегия самозащиты рыбы иная (напугать противника, предупредить о своей ядовитости), окраска рыбы может быть яркой, а сама рыба заметна издалека. Подобная стратегия Распространена в биоценозах коралловых рифов.

Иногда отражающие пластины и органы пигментации тела выполняют еще одну функцию - коммуникативную.

Так, у тропических стайных рыб, например голубых и красных неонов, "неоновая" полоса и яркая красно-голубая окраска тела служат для быстрого распознавания членов стаи в мутных воя притоков реки Амазонки. В других случаях (бойцовая рыбка) яркая окраска тела сами, служит для привлечения самки и запугивания соперника.

Цветовое зрение. Для рыб характерно цветовое зрение. Однако цвета рыбы воспринимают не в таких красках, как человек. Водная среда может быть сильно пигментирована за счет планктонных организмов или неорганических веществ. Таким образом, вода выступает в качестве светового фильтра. Кроме того, водная поверхность производит поляризацию света, что также приводит к искажению цветовой гаммы. Наконец, особенности морфологу зрительного анализатора рыб предполагают особое восприятие цветов.

Экспериментально показано, что ганглионарный слой глаза рыб по-своему анализирует возникающий в фоточувствительных клетках потенциал действия. Цвет объекта формируется в результате двух процессов: суммирования основных цветов с одной стороны и вычитания с другой стороны (рис. 2.4). В формировании цветовой палитры участвуют и структуры головного мозга, например зрительные бугры среднего мозга.

К. Фриш методом условных рефлексов доказал способной! пескаря, гольяна, колюшки и других рыб различать кормушки, окрашенные в различные цвета.

Рис. 2.4. Спектральный состав видимого рыбами света

Цветовая чувствительность глаза рыб утрачивается при уменьшении общей освещенности объекта до 1 лк и менее.

Свет как внешний раздражитель и, следовательно, зрение имеет неодинаковое значение для разных видов рыб. Планктонофаги и пелагические рыбы значительно зависят от света. При их искусственном ослеплении они утрачивают способность активно питаться.

Рыбы-планктонофаги имеют хорошо развитую зрительную систему, у них крупные глаза, большой зрачок, сложно организованная ретина и хорошо развитые отделы головного мозга, отвечающие за формирование зрительных образов (прежде всего средний мозг).

Активность таких видов рыб, как уклея, верховка, плотва, вобла связана с освещенностью водоема. При изменении освещенности от 1 до 500 лк пищевая активность рыб не меняется. Критическим уровнем освещенности является 0,1 лк, при котором рыбы прекращают активный поиск зоопланктона и поедают рачков только при непосредственном контакте с ними.

Для донных рыб (бентософагов) свет и зрение имеют меньшее значение. Так, при ослеплении осетровых их пищевая активность практически не менялась. Глаза у них мелкие, ретина чаше всего однослойная, средний мозг менее развит. Пищевая активность рыб наблюдается и при хорошей освещенности, и при полной темноте. Многие хищные рыбы открытых вод при поиске и захвате добычи также полагаются исключительно на зрение, в связи с чем их пищевая активность проявляется только днем. У таких хищников, как окунь, судак, хорошо развит зрительный анализатор. Но среди хищных рыб есть и придонные виды, а также виды с пиком активности в ночное время. Понятно, что у этих хищников зрение развито хуже, второстепенно или вообще не имеет значения, по крайней мере, при поиске пиши. Оптическая рецепция глаза основана на способности сетчатки поглощать достаточное количество световых квантов за счет разрушения светочувствительного пигмента. Установлено, что в сетчатке глаза большинства рыб с хорошим зрением присутствуют четыре фоточувствительных пигмента: родопсин с максимумом поглощения света при длине волны около 500 нм; порфиропсин с максимумом поглощения света при длине волны 522нм; йодопсин с максимумом поглощения света при длине волны 562 нм; цианопсин с максимумом поглощения света при дайне волны 62 нм. Измерения показали, что для рецепции синего света необходима структура, поглощающая излучение с длиной волны оком 450 нм, для восприятия зеленого цвета - соответственно около 525 нм и красного - около 555 нм. Исходя из этого, можно предположить, что у рыб могут быть проблемы с восприятием сине- фиолетовой части видимого спектра и более широкие возможности рецепции оранжево-красной части.

Однако практика показывает, что шкалы световосприятия рык зависят от их местообитания (химического состава, цвета воды и прозрачности). У морских рыб шкала световосприятия сдвинута в коротковолновую часть спектра, у пресноводных рыб - в длинноволновую.

Характер световосприятия зависит и от глубины обитаний рыбы, так как по мере увеличения глубины происходит резкое усиление поглощения водной средой красных и УФ-лучей. На больших глубинах преобладают лучи из синей части спектра. У донных обитателей (скаты, камбала) и глубоководных рыб воспринимаемый спектр сужен до 410-650 нм, у рыб из поверхностных слоев расширен до 400-750 нм.

В основе спектральной чувствительности глаза рыб лежит на сколько явлений. Во-первых, в ретине глаза рыб обнаружены все четыре известных у хордовых животных светочувствительных пигмента, хотя для цветового зрения достаточно и двух.

Во-вторых, все колбочки сетчатки глаза рыб (клетки, обеспечивающие цветовое восприятие) имеют в своем составе жировые капли, представляющие собой раствор каротиноидов. И прежде чем световой луч попадет на фоточувствительный пигмент, подвергается фильтрации раствором каротиноидов.

Теоретически с такими морфологическими и физиолого-биохимическими особенностями глаза рыбы могут иметь очень насыщенные цветом зрительные образы. По крайней мере, механизм цветового восприятия у высших наземных позвоночных (включая человека) проще.

Среда обитания наложила отпечаток на функции и морфологию органов зрения рыб. Известно, что за восприятие света у рыбы отвечает не только глаз. Так, у круглоротых имеются светочувствительные клетки на коже. При помощи этих образований животные определяют силу источника света.

У всех рыб имеется эпифиз - структура в составе промежуточного мозга со специфическими функциями. Однако изначально это светочувствительный орган. У миноги он имеет вид пузырька и расположен на голове близко к коже, которая в этом месте прозрачна. Это, по существу, теменной глаз, при помощи которого минога довольно сносно ориентируется в воде - определяет силу и направление источника света.

Настоящий глаз, конечно, более совершенен и по строению и по функциям. Относительная величина глаз у рыб может колебаться в значительных пределах в зависимости от образа жизни и места обитания.

Морской окунь, судак, щука и многие другие рыбы имеют сравнительно крупные глаза. А глаза различных сомов, пескаря, вьюна относительно размеров их тела небольшие.

У морских глубоководных рыб, приспособившихся к жизни при очень низкой освещенности, глаза достигают огромных размеров. Диаметр их глаза может составлять 30-50 % длины головы (Polyipnus sp., Bathymacrops sp., Mycthophium sp.). Однако у других глубоководных видов рыб глаза могут быть редуцированы или вообще отсутствовать (Idiacanthus sp., Ipnops sp.). Для пещерных рыб также характерно большое разнообразие в строении глаза: от хорошо развитого до полностью редуцированного.

На глубине 800-900 м рыбы и другие водные животные широко применяют такое явление, как люминесценция, для облегчения зрительной коммуникации (табл. 2.2).

2.2. Характеристика свечения некоторых морских организмов

У отдельных видов морских животных яркость люминесцентного свечения очень высока -до 1 кд/м2 (освещенность поверхности ночного моря в ясную лунную погоду на три порядка ниже!). Заметить такой яркий объект в мрачной морской пучине способны рыбы с плохо развитым зрением. Так, глубоководная акула Isisticus sp. испускает люминесцирующий зеленый свет такой интенсивности, что эта рыба в темноте морской пучины заметна с расстояния 10-15 м. Люминесцируют рыбы по двум причинам. Так называемое внутреннее свечение рыб (семейства Macruridae, Serranidae, Galedae и др.) возникает благодаря люминесценции скмбиотических микробов, обитающих в пищеварительном тракте этих рыб.

Наружное свечение создается самой рыбой. Некоторые виды рыб таких семейств, как Elasmobranchii, Myctophidac, Stomtatidae и др., имеют особые клетки на теле, которые выделяют специфический секрет, содержащий вещество люциферин. При контакте с морской водой люциферин окисляется с образованием кванта света. Органы свечения рыб имеют сложное и разнообразное строение. Люцифериновые железы располагаются по бокам тела рыб в виде одиночных или двойных тяжей (Elasmobranchii, Stemoptyx sp, Stomias sp.). Однако описаны виды рыб, у которых люминесцирующие органы имеют вид прожектора в передней части тела (Photoblepharon sp., Maurolicus sp.).

У рыбы Searsia имеется особая надключичная железа, которая при возбуждении выбрасывает в воду люминесцирующий секрет.

Рыбы Anomalops sp. и Photoblepharon sp. напоминают роботизированных монстров. У них люминесцирующие органы локализованы в вентральной части глазниц. При возбуждении эти рыбы могут включать и выключать люминесценцию. Причем светящийся поток не попадает на собственную сетчатку. Аномалон втягивает орган люминесценции, имеющий форму горошины, в глазную ямку при помощи стебелька, на котором расположен орган люминесценции. А фотоблефарон закрывает свой люминопрожектор ложным нижним веком. Отдельные виды светящихся рыб испускают свет постоянно, а некоторые виды осуществляют пульсирующую люминесценции при возбуждении. Излучаемый при этом свет имеет оттенок от зелено-голубого до зелено-желтого. Длина волны этого свечения лей жит в пределах 400-700 нм.

Таким образом, в условиях плохой освещенности рыбы могут утратить орган зрения или, наоборот, довести его строение до совершенства, с тем чтобы использовать даже минимальную освещенность мест их обитания. При этом у рыб развиваются дополнительные адаптационные изменения.

Рыбий глаз. Расположение глаз на голове рыб также заслуживает обсуждения. Они могут быть расположены на голове симметрично или асимметрично. Классическим примером глазной асимметрии служат камбала, палтус и некоторые другие морские донные рыбы, причем их асимметрия развивается в онтогенезе. На стадии личинки глаза у этих рыб располагаются строго по бокам головы, а по мере роста и развития рыбы один глаз перемещается на противоположную сторону головы (рис. 2.5).

Глаз рыбы обычно в передней части немного сплюснут. Хрусталик имеет форму шара (рис, 2.6). Снаружи глазное яблоко покрыто прозрачной роговой оболочкой, являющейся продолжением кожи. Глазное яблоко заполнено стекловидным телом. Коэффициент преломления роговицы и стекловидного тела глаза рыбы близок к коэффициенту преломления воды (1,33). У хрусталика коэффициент преломления в среднем составляет 1,63. Отсюда следует, что степень сфокусированности изображения на светочувствительный слой - сетчатку у рыб зависит только от положения хрусталика.

Хрусталик обладает подвижностью благодаря наличию так называемого Галерова органа. За счет сокращения его мышц хрусталик аккомодирует (фокусирует) зрение, обеспечивая четкое восприятие различно удаленных от рыбы объектов.

Рис. 2.5. Развитие глазной асимметрии у камбалы в процессе онтогенеза


Рис. 2.6. Схема строения глаза рыбы: 1-зрительный нерв: 2- биполярные клетки; 3- ганглиозные клетки; 4- палочки и колбочки; 5-сетчатка; 6- хрусталик; 7 - роговица; 8- стекловидное тело; .

Рис, 2.7. Схема зрительных полей рыбы (площадь бинокулярного и монокулярного зрения в горизонтальной плоскости)

Хрусталик в форме шара, безусловно, более предпочтителен для рыб по сравнению с двояковыпуклой линзой наземных животных. Сферическая линза имеет наибольшую светосилу. На сетчатку глаза рыбы попадает в 5 раз больше световой энергии по сравнению с глазом человека. Для водного образа жизни в условиях пониженной освещенности это большое преимущество. Радужная оболочка образует зрачок, но его отверстие у рыб меняется незначительно, т. е. зрачковый рефлекс у рыб практически отсутствует. Углы зрения у рыб очень большие и достигают 170а по горизонтали и 150а по вертикали (рис. 2.7).

Хрусталик в глазном яблоке смещен от центра и занимает нижнее или передненижнее положение относительно продольной оси глаза. В результате при одной и той же аккомодации рыба одновременно отчетливо воспринимает объекты, расположенные на разном расстоянии и под разным углом к ней. Такое видение для рыб (особенно молоди) чрезвычайно важно, так как позволяет в одно и то же время отслеживать мелкие планктонные организмы и врагов, подкрадывающихся сзади и сбоку от рыбы.

Дальность видимости объектов в воде зависит от ее прозрачности и освещенности. Во внутренних водоемах, например прудах, она не превышает 1 м. В морских водах она значительно выше и достигает десятков метров. Правда, на этот показатель большое влияние оказывает величина объекта наблюдения, а также подвижен он или нет. Движущиеся крупные объекты, а также их тени воспринимаются рыбами с большого расстояния и оцениваются как источник опасности с соответствующими оборонительными реакциями.

Видимость объектов в воде рыбами изменяется в процессе онтогенеза. Связывают это с тем, что с ростом рыбы увеличиваются размеры глаза и возрастают функциональные возможности зрительного анализатора (табл. 2.3).

Однако следует иметь в виду, что сравнительно большая дальность видения у рыб не обеспечивается четкостью распознавания предметов. Большая дальность зрения скорее всего имеет сигнальное значение в распознавании опасности. В процессе роста рыб изменяется и разрешающий угол глаза. Связанная с этим острота зрения рыб возрастает в 6 раз (табл. 2.4).

Сетчатка глаза у рыб устроена примерно так же, как и у высших позвоночных (рис. 2.8). Она имеет инвертированный характер восприятия света. Прежде чем попасть на светочувствительные клетки, расположенные в базальной части ретины, свет проходит через ганглионарные, биполярные и частично через амокринные и горизонтальные клетки в составе сетчатки. Несомненно, что при этом происходит частичное рассеивание света, Биологический смысл данного явления остается

неясным, Однако ни один исследователь не берет на себя смелость заявлять об инвертированности сетчатки глаза как эволюционной ошибке природы. Инвертированность сетчатки отмечается в строении глаза всех позвоночных животных от рыб до высших млекопитающих. Если бы инвертированность сетчатки была ошибкой природы, то в процессе эволюционирования от низших животных к высшим она была бы устранена за ненадобностью.

Рис. 2.8. Схема строения сетчатки глаза рыб: ганглионарная клетка; 2- наружная пограничная мембрана;3- колбочка; 4- палочка; 5- пигментный эпителий

Как видно из рисунка 2.8, ретина имеет довольно сложное микростроение, представленное, по крайней мере, четырьмя функционально важными слоями специфических клеток (слой ганглионарных, биполярных, амокринных и горизонтальных клеток) осле проникновения светового луча через ганглионарные биамокринные и горизонтальные клетки квант света воспринимается слоем пигментного эпителия, клетки которого имеют включения красителя фусцина (реже гуанина). Пигментные клетки обладают подвижностью и могут подниматься или опускаться в соседний слой - слой рецепторных клеток, открывая или прикрывая их от световых лучей, т.е. слой пигментного эпителия служит фильтром (подобно темным солнцезащитным очкам у человека), дозирующим общую освещенность фоторецепторов.

Фоторецепторный слой клетчатки образован клетками трех типов палочками, одиночными колбочками и сдвоенными (близнецовыми) колбочками (Рис 2.9). По мнению ряда авторов одиночные колбочки костистых рыб морфологически неоднородны и делятся на клетки с коротким миоидом и клетки с удлиненным миоидом

По сетчатке палочки и колбочки рассредоточены неравномерно. На периферии обнаруживаются только палочки. В центральной части сетчатки могут присутствовать и палочки, и колбочки. В области центральной ямки светочувствительный слой образован одними колбочками. Экспериментально установлено, что палочки обеспечивают восприятие световой энергии в условиях недостаточной освещенности (при сумеречном свете).

При высокой освещенности в работу включаются колбочки, обеспечивая при этом высокую остроту зрения и цветовое видение объектов. Соотношение палочек и колбочек в ретине неодинаково у разных рыб и определяется двумя факторами: эволюционным положением вида и образом жизни. Например, у многих пластинчатожаберных рыб ретина состоит исключительно из палочек.

Рис. 2.9. Фоторецепторные клетки рыб:

а - палочки; б- колбочки (одиночные и близнецовые); 1- наружный сегмент: 2- эллиисоид; 3- миоид (сократительный элемент); 4-наружная пограничная мембрана сетчатки 5- клеточное ядро; 6- масляная капля, содержащая каротиноид; 7- основание (ножка клетки)

У костистых морских глубоководных рыб количество колбочек очень небольшое. Если быть точным, то надо отметить и влияние стадии онтогенеза на соотношение светочувствительных клеток в сетчатке глаза рыб. На личиночной стадии развития у большинства рыб превалируют колбочки, а у некоторых, например сельдей, палочки вообще отсутствуют. И лишь при переходе на активное питание происходит разрастание палочек. Это биологически оправдано, так как у активно питающейся молоди из-за высокого уровня обменных процессов возникает потребность в пищевом поведении и в условиях ограниченной видимости. Слой сетчатки глаза, образованный биполярными клетками, обеспечивает самый первый уровень интеграции сигналов, поступающих от фоточувствительных клеток - палочек и колбочек.

У активных дневных рыб с хорошим зрением четыре светочувствительных клетки образуют синапсы с четырьмя биполярными клетками, которые, в свою очередь, контактируют с одной ганглиозной клеткой.

У сумеречных рыб каждая биполярная клетка интегрирует большее количество фоторецепторов. Так, у налима на теле одной биполярной клетки обнаруживается 34 десятка синапсов с фоторецепторами, а на каждую ганглиозную клетку приходится 7 биполярных клеток.

Из вышесказанного ясно, что слой ганглиозных клеток сетчатки выполняет функцию дальнейшей интеграции зрительных сигналов. Аксоны ганглиозных клеток дают начало зрительному нерву, идущему в зрительные центры головного мозга.

Ретиномоторная реакция. Сетчатке рыб свойственна ретиномоторная реакция, позволяющая зрительному анализатору формировать адекватную зрительную картину независимо от степени освещенности наблюдаемого объекта. Этот механизм особенно важен Для рыб, так как возможности зрачка глаза как регулятора светового потока у рыб очень ограничены. Поэтому только

ретиномоторная реакция дает рыбам возможность быть активными в условиях меняющегося освещения.

Схема адаптации ретины к уровню светового потока представлена на рис. 2.10. При попадании на ретину яркого света после темновой адаптации (правая часть рис. 2.10) в сетчатке наблюдаются перемещения светочувствительных клеток. Первыми реагируют клетки пигментного эпителия: они погружаются в слой палочек и колбочек и закрывают палочки. При этом колбочки за счет своих сократительных структур - миоидов - подтягиваются и как бы вылезают из пигментного слоя. Палочки производят перемещения в противоположном от колбочек направлении, что обеспечивает их плотное укрытие пигментом. Таким образом, колбочки поглощают энергию яркого света, а палочки реципроктно блокируются и не участвуют в процессе фоторецепции.

Рис. 2.10. Ретиномоторная реакция: 1-палочки; 2- колбочки; 3- пигментные 1 клетки В условиях ограниченной освещенности (левая часть рис. 2.10) к наружной мембране подтягиваются палочки, а колбочки погружаются в пигментный слой и

изолируются от световых лучей. Границы освещенности, при которой запускается ретиномоторный механизм, различны у разных рыб. У морской атерины ретиномоторная реакция возникает при освещенности 1-10лк, у ставриды - 0,01-1,0лк, у карася - 0,01 -1,0 лк, у вьюна - 0,010,1 лк, у голавля - 0,001-0,0001 лк. На чувствительность глаза рыбы к яркости света влияет процесс темновой (световой) адаптации. Темновая адаптация глаза рыб занимает около 30 мин, световая адаптация происходит быстрее - всего за 10-30с. Однако полная настройка

глаза на эффективную рецепцию света может продолжаться и несколько часов. Контрастная чувствительность глаза в сумерках ниже, чем при ярком освещении. Способность выделять предмет из общего фона зависит от яркости фона, характеристик самого предмета (его яркости, размеров, подвижности) и адаптационного состояния глаза. Выше уже отмечалось, что рыбы видят недалеко, если проводить сравнение с наземными животными. Здесь отметим следующее. Дальность видимости предметов в воде зависит и от их цветности. Сети, окрашенные в разный цвет, хамса, например, замечает на разном расстоянии (в м): сине-зеленые 0,5-0,7 темно-синие 0,8-1,2 темно-коричневые 1,3 - 1,5 серые и черные 1,5-2,0 белые 2,0-2,5.

Предметы в воде и предметы над водой воспринимаются рыбой неодинаково из-за разной преломляющей способности воды и воздушной среды. На рис. 2.11 показано поле зрения рыбы.

Предметы у поверхности воды рыба воспринимает крупнее, чем они есть на самом деле, а дальние объекты - как мелкие. Такая информация, несмотря на ее необъективность, не лишена смысла, так как объекты у поверхности воды представляют большую опасность для рыбы, чем удаленные объекты. В поле зрения рыбы попадают предметы, даже расположенные у горизонта (дерево). Однако они воспринимаются рыбами в сильно искаженном виде. Зрительное поле рыбы настолько специфично, что в оптике широкоугольные объективы, создающие по периферии искажение, получили название "рыбий глаз". В воде рыба (имеются в виду активные дневные виды рыб с хорошим зрением) видит не только предметы в окне (угол 97,6 а), но и предметы, отраженные водной поверхностью со дна (на рис. 2.11 это камни). Механизм фоторецепции. Большой интерес представляет интимный механизм фоторецепции и трансформации энергии кванта света в энергию нервного импульса. Чувствительность палочек и колбочек к свету обусловлена наличием в них пигментов. В химическом отношении любой из встречающихся в классе рыб зрительный пигмент является сложным белком, в составе которого имеется полипептидная структура, различная в палочках и колбочках, соединенная с одним из производных витамина А: Родопсин = Ретиналь + палочковый белок опсин Порфиропсин = Ретинен + палочковый белок опсин Йодопсин = Ретиналь + колбочковый белок опсин Цианопсин = Ретинен + колбочковый белок опсин Молекулярную массу зрительных пигментов оценивают в 28 000-40 000, диаметр молекулы - в 40-50 ангстрем (А). В фоточувствительных клетках пигменты локализованы в мембранах наружных сегментов. И ретиналь, и ретинен являются альдегидами витамина А. Они различаются только строением циклической части молекулы. У ретинена кольцо в положении "3" имеет дополнительную двойную связь (рис. 2.12). Это различие приводит к смещению спектра поглощения пигмента в красную область. На действие кванта света реагирует 11-цисизомер ретиналя и ретинена. Под действием света углеродная цепь 11-цисизомера распрямляется и тянет за собой молекулу опсина, который изменяет свою конформацию Дерево

Рис. 2.11. Поле зрения рыбы

Рис. 2.12. Ретинол и ретинен (витамин А2)

Далее происходят два важных события. Во-первых, светочувствительная клетка перемещается в пигментный слои сетчатки, где осуществляется восстановление изомера. Во-вторых, конформационные изменения белка опсина приводят к изменению состояния мембраны эндоплазматического ретикулума с открыванием кальциевых

каналов светочувствительных клеток. В конечном счете изменяется мембранный потенциал базальной мембраны палочки (колбочки), которая является одновременно и пресинаптической частью синаптического образования с биполярной клеткой. Палочки и колбочки имеют отрицательный потенциал покоя, реакция рецепции кванта света приводит к гиперполяризации клеточной мембраны, т. е. ее внутренняя

сторона становится еще более электроотрицательной по отношению к наружной. Экспериментально доказано, что гиперполяризация мембраны не влияет на калиево-натриевый насос, однако изменяет мембранную проницаемость для ионов натрия. Все эти электрохимические изменения фоторецепторов приводят к возбуждению биполярных клеток, а их деятельность в свою очередь, интегрируют ганглиозные клетки. Так рождается нервный импульс, затем поступающий в зрительные центры головного мозга.

Зрительный анализатор и развитие головного мозга. Уровень развития фоторецепции оказывает большое влияние на морфологию головного мозга, в частности развитие среднего мозга, мозжечка и ретикулярной формации ствола (рис. 2.13).

У активных дневных рыб - верховки и плотвы - хорошо развиты зрительные бугры среднего мозга, которые выполняют функцию конечной интеграции нервных импульсов, поступающих по зрительным нервам. У белуги, рыбы с сумеречным

зрением, средний мозг развит хуже, зато хорошо развит обонятельный и продолговатый мозг, отвечающий за осязание. У рыб с острым зрением большой удельный вес в структуре головного мозга приходится на мозжечок. Возможно, это связано с тем, что рыбы с хорошим зрением, как правило, ведут активный образ жизни, т. е. обладают более сложными локомоторными реакциями. У таких рыб, как щука, судак, окунь, лосось, на верхней проекции головного мозга средний мозг занимает 50-55 % площади проекции. У осетровых рыб площадь проекции среднего мозга составляет 13-23 %. Роль зрительной сигнализации в онтогенезе существенно меняется. Параллельно

меняется и морфология головного мозга. Например, мальки сазана длиной 7-10мм питаются планктоном, в поиске которого животные полагаются на зрение. Поэтому на этой стадии развития у сазана крупные глаза и хорошая острота зрения. Средний мозг на проекции головного мозга в это время занимает 45 % площади. У сазана, перешедшего на питание бентосом (длина 327мм), острота зрения падает, а проекция среднего мозга сокращается до 31 %. У взрослых рыб, ориентирующихся при поиске пище в основном на химическую и тактильную сигнализацию, этот показатель еще ниже.

Рис. 2.13. Строение головного мозга трех видов рыб с различным зрением: а - верховка, 6- плотва, в -белуга; 1- передний мозг; 2- средний мозг; 3, 4- задний мозг

Похоже, что и степень развития мозжечка у рыб связана с функцией зрения. Мозжечок хорошо развит у светолюбивых видов.

Таким образом, зрительный анализатор у рыб имеет большое значение. Зрение позволяет рыбам осуществлять адекватные реакции на изменения внешней среды. В процессе филогенеза развитие функции зрения стимулировало возникновение многих прогрессивных морфофункциональных адаптации и прежде всего развитие центральной нервной системы. В то же время следует подчеркнуть, что класс рыб достаточно разнообразен, и в нем имеется немало представителей, пищевая, половая, оборонительная и прочие виды активности которых не зависят или слабо зависят от зрения.



2007-02-27 19:52:08

ЧТО НУЖНО ЗНАТЬ РЫБОЛОВУ О ЧУВСТВАХ РЫБ?

1. Зрение пресноводных рыб

Стопроцентной уверенности в том, как именно протекает жизнь под поверхностью воды, у нас нет. О том, как реагирует та или иная рыба на различные раздражители, каким образом она отыскивает приманку и что останавливает ее от решительной поклевки, мы судим косвенно - по результатам рыбалки, наличию-отсутствию «хваток» и сходов и т. д., и т. п....

Для того, чтобы эффективно применять свой рыболовный опыт в противостоянии с обитателями наших водоемов, современный рыболов- любитель или спортсмен обязан обладать немалым багажом знаний, полученных благодаря неоднократным личным наблюдениям или почерпнутых из достоверных научных источников.

В настоящей статье мы продолжаем разговор об органах чувств рыб и их неравнозначной роли в жизни подводных обитателей (см. «СР» №№ 2 и 8 за 2002 г., № 2 за 2003 г. и № 2 за 2004 г.).

Об органах чувств рыб

В истории развития человеческой цивилизации особое внимание изучению рыб начали уделять в IV веке до н. э. Фактически ихтиология как наука о рыбах началась с Аристотеля (384-322 гг до н. э.), который сделал первые попытки классифицировать огромное разнообразие обитателей царства Нептуна и описывал биологию и анатомию многих видов рыб.

За две с половиной тысячи лет рыб изучили достаточно подробно, но естествоиспытатели II-XIX-го веков, описывающие в своих научных трудах подводных жителей рек, морей и океанов, были искренне уверены в том, что рыбы - это очень примитивные, глупые существа, которые не обладают ни слухом, ни осязанием, ни даже какой-либо памятью.

Кстати, эти, в корне неверные, воззрения сохранялись в научной среде вплоть до 1940-х годов.

В настоящее время практически любой «литературно подкованный» рыболов, не говоря уже об ученых-ихтиологах, знает, для чего у рыб существует боковая линия, могут ли рыбы слышать или обонять, с помощью чего они отыскивают корм или чувствуют приближение хищника...

Общеизвестно, что органы чувств или, как принято их сейчас называть - сенсорные системы , дают возможность живому организму воспринимать разнообразную информацию об окружающем мире, а также сигнализировать о внутреннем состоянии самого организма.

Органы чувств рыб способны:

Воспринимать электромагнитные поля в видимой (зрение ) и инфракрасной (температурная чувствительность ) областях спектра;

Ощущать механические возмущения, или звуковые волны (слух ),

Чувствовать силу тяжести (вестибулярная и гравитационная чувствительность ) и механическое давление (осязание );

Распознавать разнообразные химические сигналы - восприятие веществ в жидкой фазе (вкус ) и в газовой фазе (обоняние ).

К сенсорным системам рыб можно отнести зрительную, слуховую, вкусовую, обонятельную, осязательную, электрорецепторную сенсорные системы, а также сейсмосенсорную систему, представленную боковой линией, общее химическое чувство.

К одним из самых значимых органов чувств у животных относится зрение - это способность воспринимать электромагнитные поля в видимой области спектра.

При помощи зрительных анализаторов рыбы ориентируются в пространстве, находят пищу или избегают хищников, занимают соответствующие экологические ниши, визуально оценивая характер зрительного окружения (Beur, Heuts, 1973).

Популярно о строении глаза рыб

Рыбы видят (воспринимают свет) в водной среде при помощи глаз и особых светочувствительных почек. Особенности видения рыб под водой обусловлены прозрачностью вод, их вязкостью и плотностью, глубиной, скоростями течений, способом жизни и питания.

По сравнению с наземными животными и человеком, рыбы более близоруки. Роговица их глаз плоская, а хрусталик шаровидный. Именно его форма и обуславливает близорукость у рыб. У многих рыб хрусталик может выступать из отверстия зрачка, благодаря чему увеличивается поле зрения.

Вещество хрусталика такой же плотности как и вода, в результате свет, проходя через него, не преломляется и на сетчатке глаза получается четкое изображение.

Сетчатка глаза (внутренняя оболочка) имеет сложное строение, состоит из четырех слоев: пигментного, светочувствительного (так называемые палочки и колбочки ) и двух слоев нервных клеток, дающих начало зрительному нерву.

Роль палочек - функционирование в сумерках и ночью, причем они нечувствительны к цвету. При помощи колбочек рыбы воспринимают различные цвета.

Зрачок практически у всех видов неподвижен, однако камбалы, речной угорь, акулы и скаты в состоянии его сужать и расширять, увеличивая остроту зрения.

Особенности зрения у разных рыб

У большинства рыб движения глаз скоординированы, только у некоторых (зеленушка, калкан, морской язык и др.) они могут двигаться независимо друг от друга. У хищных рыб глаза наиболее подвижны.

У наших морских и пресноводных рыб органы зрения - глаза - расположены по бокам головы, причем каждый глаз видит свое поле зрения. Такое зрение называется монокулярным . Спереди монокулярное зрение каждого глаза перекрывается, появляется зона бинокулярного зрения . Угол бинокулярного зрения у рыб очень мал - не более 30º.

Известный американский ученый Роберт Вуд показал, как рыбы могут видеть из воды. По законам преломления световых лучей, предметы, находящиеся на суше, кажутся рыбе выше, чем на самом деле. Если смотреть из воды в сторону берега под углом к вертикали больше чем 45°, то из-за полного внутреннего отражения от поверхности воды наблюдателю (рыбе) становятся видны объекты (рыболов). Стоящий на берегу рыболов представляется ей висящим в воздухе и четко различимым, но сидящего человека рыба не заметит, так как под малым углом наклона лучей к горизонту (менее 45º) наземные объекты ей невидимы.

Подавляющее большинство пресноводных рыб видят максимум на 1 м. В прозрачной воде (например, в наших водохранилищах зимой) рыбы практически могут видеть на расстоянии 10-12 м, однако четко различают предметы, их форму, цвет в пределах 1-1,5 м. При аккомодации глаза с передвижением хрусталика глаз настраивается на расстояние, не превышающее 15 метров. Это предел дальности зрения рыб.

Согласно экспериментальным исследованиям, речной окунь в состоянии видеть предмет величиной 1 см на расстоянии около 5,5 метров. При уменьшении размеров предмета в 10 раз расстояние видения его хищником пропорционально уменьшалось - окунь видел предмет за 55 см. Крохотный объект величиной 0,1 мм хищник видел только за 5,5 см.

Ихтиологи различают светолюбивых (дневных) и сумеречных рыб. У дневных видов в сетчатке глаза палочек немного, зато колбочки большие. Эти рыбы (щука, плотва, голавль, жерех и др.) хорошо различают цвета - красный, синий, желтый, белый. У сумеречных рыб (судак, налим, сом,) в сетчатке находятся только палочки, и, следовательно, различать цвета и их оттенки они не в состоянии.

Глаза как орган зрения хорошо развиты у светолюбивых рыб (щука, чехонь, красноперка) и некоторых сумеречных видов (лещ, ерш, густера, налим). У других сумеречных рыб (придонных) - карпа, карася и линя - глаза развиты хуже (Протасов, 1968). В связи с этим у светолюбивых рыб ориентация и поиск в пространстве, питание могут осуществляться преимущественно с помощью зрения, а у сумеречных - главным образом благодаря органам осязания и других сенсорных систем.

У пелагических планктофагов (белый толстолобик, чехонь) поиск пищи осуществляется практически полностью благодаря зрению.

Способность рыб различать цвета. Дневные рыбы достаточно хорошо различают цвета, по крайней мере, спиннингисты об этом знают, применяя при разной освещенности белый виброхвост или бело-красный твистер в охоте на щуку или окуня. Черноморская хамса на фоне сине-зеленой воды различает (видит) сети разной окраски на следующем расстоянии: сине-зеленые - 0,5-0,7 метров; темно-синие - 0,8-1,2 м; темно-коричневые - 1,3-1,5 м; серые или черные - 1,5-2,0 м; белые (неокрашенные) - 2,0-2,5 м.

Сумеречные и ночные рыбы, как было отмечено выше, различать цвета не в состоянии, поэтому рыболовы-спортсмены и любители при экспериментировании с приманками должны уделять особое внимание не цвету приманки, а ее поведению (лобовому сопротивлению, шумовым характеристикам).

Применение специально ярко окрашенных приманок для ловли сумеречных хищников (тех же судака или сома) автору представляется неоправданным, так как эта рыба реагирует не на цвет некоего «Предатора», а только на его гидродинамические качества, корректируя предстоящий бросок видением (благодаря отличному сумеречному - черно-белому - зрению) абриса приманки. Причем чем ярче ее силуэт на фоне усеянного камнями дна (белое- на черном , флуоресцентное на черном ), тем бóльшее количество хваток и поимок хищника отметит спиннингист при применении одинаковых приманок, но разных расцветок. И снова решающее для броска судака значение будет иметь белый или желтый цвет приманки, а уж никак не фиолетовые, например, разводы на зеленом фоне воблера (если, конечно, это не супернеотразимая, гремяще-звенящая модель)...

Зрительное восприятие рыбами движений. Российские ученые исследовали способности зрительного аппарата рыб восприятия движения. Для этого наблюдали за оптомоторной реакцией рыб на последовательно движущиеся полосы или детали обстановки в течение 1 секунды (определение величины оптических моментов ). Были получены следующие результаты.

Оптический момент у верховки и карася составил 1/14 - 1/18 секунды, щуки и линя - 1/25 - 1/28 с, леща и окуня - 1/55 с. Рыбы, имеющие оптические моменты от 1/50 до 1/67 с, способны вдвое детальнее воспринимать одно и то же движение, чем человек, а рыбы, имеющие оптический момент 1/10 - 1/14, - вдвое менее детально.

Тонкое восприятие движения зрительным аппаратом рыб позволяет жертвам уловить начальный момент броска и ускользнуть от хищника. Для мирных рыб сигналом предстоящего броска хищника являются подергивание и вибрирование спинных и грудных плавников, а также всего тела охотника, улавливаемые глазом потенциальной жертвы (Протасов, 1968).

Сытые и утомленные рыбы имеют слабо выраженную оптомоторную реакцию (реакцию на движение), а голодные и хорошо отдохнувшие - сильно выраженную реакцию.

Органы чувств рыб в пищевом поведении рыб

Представляют интерес для рыболова также и экспериментально полученные и проверенные в естественных условиях результаты поочередного функционирования органов чувств рыб при поиске ими кормовых объектов.

Во время «свободного поиска», когда расстояние до кормового объекта превышает 100 м, у рыб «работает» только обоняние , остальные сенсорные системы не задействованы. При приближении к источнику «вкусного» запаха от 100 до 25 м к обонянию подключается слух . На расстоянии 255 м рыба пытается найти корм при помощи обоняния , зрения и слуха .

Когда до пищи остается «рукой подать» (51 м), рыба в первую очередь пользуется зрением , затем обонянием и слухом . На расстоянии 10,25 м в поиск вовлекаются одновременно зрение, слух, боковая линия, обоняние, наружная вкусовая чувствительность (ощупывание грунта усиками, касания губами, рылом, даже плавниками).

Когда еда «под носом» и расстояние до нее не превышает 0,25 м, рыба «включает» практически все органы чувств: зрение, боковую линию, электрорецепцию, наружную вкусовую чувствительность, общее химическое чувство, осязание. Их совместная работа быстро приводит к обнаружению рыбой корма.

Поведение хищных рыб в зависимости от особенностей зрения

По отношению к периоду наибольшей пищевой активности применяют такое разделение хищных рыб: окунь - сумеречно-дневной хищник, щука - сумеречный, судак - глубокосумеречный.

Окуни-ихтиофаги и щуки питаются круглосуточно: днем охотятся за добычей из засады, в сумерках и на рассвете выходят на открытую воду и преследуют жертв. «Сумеречное» питание хищников происходит при освещенности от сотен до десятых долей люксов (вечером) и наоборот (утром). В этот период у окуня и щуки функционирует дневное зрение с максимальной остротой и дальностью видения, а плотные стаи рыб-жертв начинают распадаться, обеспечивая удачную охоту хищникам. С наступлением темноты отдельные рыбешки рассредоточиваются по акватории, верховка и уклейка при падении освещенности ниже 0,01 лк опускаются на дно и замирают. Охота хищных рыб прекращается.

В предутренние часы при освещенности от десятых долей до сотен люксов «избиение младенцев» продолжается до момента, когда рыбы-жертвы образуют плотные оборонительные стаи.

Согласно исследованиям ихтиологов, летом продолжительность утреннего питания хищников достигала 3 часов, вечернего - 4 часа и ночного (судак) - 5-6 часов.

Судак может пользоваться зрением в тех условиях, когда другие рыбы видеть не могут. Сетчатка глаза хищника содержит сильно отражающий свет пигмент - гуанин, который увеличивает ее чувствительность. Охота судака за мелкими стайными рыбами наиболее успешна при глубоко сумеречной освещенности - 0,001 и 0,0001 лк.

Осенью, в пасмурную и дождливую погоду, когда освещенность изменяется незначительно, молодь мирных рыб образует разреженные оборонительные стаи и хищники могут успешно охотиться на протяжении всего дня, а не только в сумерках. Происходит так называемый «осенний жор» хищника.

Подмечена интересная особенность охоты щуки и окуня на свету и при высокой прозрачности воды. В дневное время эти рыбы выступают как типичные хищники-засадчики: при неудачном захвате добычи из засады они не преследуют ее, чтобы не отпугнуть других потенциальных жертв от места охоты. Те районы, где затаился хищник, обнаруживший азартом свое место укрытия, стайки рыб обходят стороной. Поэтому днем щука или окунь делают четко выверенный и точный бросок только при возможности 100%-го захвата добычи. Решающую роль в удачном броске играет зрение.

Таким образом, зная об особенностях и возможностях зрительного восприятия рыб, рыболовы получают возможность осуществлять на водоеме целенаправленный поиск будущего подводного «спарринг-партнера». Знание сильных и слабых сторон противника (читай - возможностей зрения рыб в морской и пресной воде, днем и в сумерках ), надеюсь, помогут многочисленным поклонникам рыбной ловли выходить победителем из этой увлекательнейшей и честной схватки...

Изменения окраски тела рыб связано с тем, что рыбы приспосабливаются к тем условиям, в которых они живут, окраска их тела становится похожа на цвет грунта, либо приобретают своего рода «камуфляжную» окраску, если обитают среди водных растений. Надводный мир по сравнению с животными, живущими на суше, рыбы видят несколько иным. Если смотреть вертикально вверх, то рыбы видят все без искажения, а если под углом в сторону, то из-за преломления луча зрения и двух сред – воздуха и воды, картинка искажается.

Зрение у рыб . У рыб максимальная видимость в прозрачной воде не превышает 10 – 12 метров, это все по тому, что оптические свойства воды не позволяют далеко видеть. Расстояние видимости может и сокращаться, причиной этому может послужить: цвет воды, мутность воды, освещенности и т.д. На расстоянии не более 2 метров рыбы видят предметы наиболее четко. Лучше всех видят хищники, предпочитая день, обитающие в прозрачной воде, — форель, хариус, щука, жерех. У некоторых рыб, питающихся планктоном и донными организмами (сом, лещ, угорь, налим, судак и др.) в сетчатке глаза имеются такие светочувствительные элементы, которые способные воспринимать слабые световые лучи. Благодаря этим элементам эти рыбы довольно хорошо видят и в темноте.

Угол зрения рыб устроен таким образом : они могут видеть предметы в зоне около 150° по вертикали и до 170° по горизонтали. Из воды в воздухе рыба видит предметы как бы через круглое «окно», ограниченное углом зрения порядка 97°. Соответственно, если рыба подплывет ближе к поверхности, то «окно» будет становиться все меньше и меньше.

Видит ли рыба рыболова

Вблизи берега рыба очень хорошо рыболова, но не видит его. Это как раз из-за преломления луча зрения, описанного выше. Поэтому в зоне видимости маскировка имеет смысл. Следовательно, не стоит одевать на рыбалку одежду с яркими цветами, а наоборот в качестве маскировки подбирать более защитный цвет, который будет сливаться с общим фоном.

На мелководье вероятность того, что рыба заметит рыболова намного меньше, чем при ловле на более глубоких местах, вблизи берега. Из этого всего можно сделать вывод : что сидеть всегда лучше, чем стоять и меньше вероятности попасть в поле зрения рыбы. Вот почему и спиннингисту, который охотится с лодки, рекомендуется ловить рыбу (забрасывать приманку и вываживать хищника) сидя не только с целью соблюдения техники безопасности, но и стараться не быть замеченным рыбой.

Зрение или способность к рецепции электромагнитного излучения определенного спектра играет важную роль в их жизни. Клетки сетчатки глаз рыбы по составу сходны с человеческими.

- конечно же, глаз, состоящий из шарообразного хрусталика, приближенного к плоской роговице и расположенный сбоку головы. Характерные особенности рыбьего зрения: близорукость; возможность видеть в нескольких направлениях одновременно.

Угол зрения рыб таков: около 150° по вертикали и до 170° по горизонтали.
Зрение рыбы монокулярно: каждый глаз видит самостоятельно. Для того чтобы разглядеть что-либо обеими глазами, рыба быстро поворачивается. Двумя глазами она видит очень узкую конусообразную площадь, находящуюся впереди.

Многие рыбы имеют выступающий из отверстия зрачка хрусталик, что увеличивает поле зрения. Спереди монокулярное зрение каждого глаза перекрывается, и образуется на 15–30° бинокулярное зрение. Основной недостаток монокулярного зрения - неточная оценка расстояния.
Глаз рыбы имеет три оболочки: 1) склера (наружная); 2) сосудистая (средняя); 3) сетчатка, или ретина (внутренняя).

Наружная оболочка склера защищает глаз от механических повреждений, образуя прозрачную плоскую роговицу.
Сосудистая оболочка обеспечивает кровоснабжение глаза. В передней части глаза сосудистая оболочка переходит в радужную, в которой в свою очередь располагается зрачок, с входящим в него хрусталиком.
В сетчатке находятся: 1) пигментный слой (пигментные клетки); 2) светочувствительный слой (светочувствительные клетки: палочки и колбочки); 3) два слоя нервных клеток; палочки и колбочки для восприятия света в темноте и цветоразличения.

По количеству этих палочек и колбочек (светочувствительных клеток) в сетчатке рыб делят на дневных и сумеречных.

Еще одна характерная особенность зрения рыбы: оно цветовое. Ученые установили, что некоторые виды рыб различают до 20 цветов. У хищников цветовое зрение развито лучше, чем у травоядных. Многие рыбы воспринимают диапазон световых волн даже шире чем человек. Рыба может частично видеть и ультрафиолетовое излучение. В целом же, спектр видимого излучения света у разных видов рыб различен.

В среднем, рыба хорошо видит в прозрачной, освещенной солнцем воде, однако некоторые виды приспособились видеть в сумерках и в мутной воде. Такие виды рыб имеют особое строение глаз. Однако и в прозрачной воде максимальная видимость у рыбы - 10-14 метров. Наиболее точная видимость - в пределах 2 метров.

Преломление световых волн в воде - достаточно сложная тема, и на разных глубинах преобладают разные волны спектра света, поэтому у рыбы развивается восприимчивость к различным видам спектральных волн света. Но в среднем, диапазон восприятия световых волн рыб составляет 400–750 нм.

В отличие от человека, зрение не играет главную роль среди органов чувств рыбы. Поврежденные или отсутствующие органы зрения рыбы (например, при ) неплохо компенсируются другими органами: боковой линией, органами обоняния, вкуса.

Рыбы, живущие в особых условиях, например, глубоководные виды, часто имеют отличное от большинства рыб строение органов зрения, либо не имеют их вообще. Оказавшись на воздухе, рыба не видит почти ничего.